skip to main content


Search for: All records

Creators/Authors contains: "Chandra, Poonam"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT

    Magnetic fields are extremely rare in close, hot binaries, with only 1.5 per cent of such systems known to contain a magnetic star. The eccentric ϵ Lupi system stands out in this population as the only close binary in which both stars are known to be magnetic. We report the discovery of strong variable radio emission from ϵ Lupi using the upgraded Giant Metrewave Radio Telescope (uGMRT) and the MeerKAT radio telescope. The light curve exhibits striking unique characteristics including sharp high-amplitude pulses that repeat with the orbital period, with the brightest enhancement occurring near periastron. The characteristics of the light curve point to variable levels of magnetic reconnection throughout the orbital cycle, making ϵ Lupi the first known high-mass, main sequence binary embedded in an interacting magnetosphere. We also present a previously unreported enhancement in the X-ray light curve obtained from archival XMM–Newton data. The stability of the components’ fossil magnetic fields, the firm characterization of their relatively simple configurations, and the short orbital period of the system make ϵ Lupi an ideal target to study the physics of magnetospheric interactions. This system may thus help us to illuminate the exotic plasma physics of other magnetically interacting systems such as moon–planet, planet–star, and star–star systems including T Tauri binaries, RS CVn systems, and neutron star binaries.

     
    more » « less
  2. ABSTRACT

    We present multiwavelength observations of supernova (SN) 2017hcc with the Chandra X-ray telescope and the X-ray telescope onboard Swift (Swift-XRT) in X-ray bands, with the Spitzer and the TripleSpec spectrometer in near-infrared (IR) and mid-IR bands and with the Karl G. Jansky Very Large Array (VLA) for radio bands. The X-ray observations cover a period of 29 to 1310 d, with the first X-ray detection on day 727 with the Chandra. The SN was subsequently detected in the VLA radio bands from day 1000 onwards. While the radio data are sparse, synchrotron-self absorption is clearly ruled out as the radio absorption mechanism. The near- and the mid-IR observations showed that late time IR emission dominates the spectral energy distribution. The early properties of SN 2017hcc are consistent with shock breakout into a dense mass-loss region, with $\dot{M} \sim 0.1$ M⊙ yr−1 for a decade. At few 100 d, the mass-loss rate declined to ∼0.02 M⊙ yr−1, as determined from the dominant IR luminosity. In addition, radio data also allowed us to calculate a mass-loss rate at around day 1000, which is two orders of magnitude smaller than the mass-loss rate estimates around the bolometric peak. These values indicate that the SN progenitor underwent an enhanced mass-loss event a decade before the explosion. The high ratio of IR to X-ray luminosity is not expected in simple models and is possible evidence for an asymmetric circumstellar region.

     
    more » « less
  3. ABSTRACT

    Recently, a large number of hot magnetic stars have been discovered to produce auroral radio emission by the process of electron cyclotron maser emission (ECME). Such stars have been given the name of main-sequence radio pulse emitters (MRPs). The phenomenon characterizing MRPs is very similar to that exhibited by planets like Jupiter. However, one important aspect in which the MRPs differ from aurorae exhibited by planets is the upper cut-off frequency of the ECME spectrum. While Jupiter’s upper cut-off frequency was found to correspond to its maximum surface magnetic field strength, the same for MRPs are always found to be much smaller than the frequencies corresponding to their maximum surface magnetic field strength. In this paper, we report the wideband observations (0.4–4.0 GHz) of the MRP HD 35298 that enabled us to locate the upper cut-off frequency of its ECME spectrum. This makes HD 35298 the sixth MRP with a known constraint on the upper cut-off frequency. With this information, for the first time, we investigate into what could lead to the premature cut-off. We review the existing scenarios attempting to explain this effect, and arrive at the conclusion that none of them can satisfactorily explain all the observations. We speculate that more than one physical processes might be in play to produce the observed characteristics of ECME cut-off for hot magnetic stars. Further observations, both for discovering more hot magnetic stars producing ECME and to precisely locate the upper cut-off, will be critical to solve this problem.

     
    more » « less
  4. ABSTRACT

    Coherent radio emission via electron cyclotron maser emission (ECME) from hot magnetic stars was discovered more than two decades ago, but the physical conditions that make the generation of ECME favourable remain uncertain. Only recently was an empirical relation, connecting ECME luminosity with the stellar magnetic field and temperature, proposed to explain what makes a hot magnetic star capable of producing ECME. This relation was, however, obtained with just 14 stars. Therefore, it is important to examine whether this relation is robust. With the aim of testing the robustness, we conducted radio observations of five hot magnetic stars. This led to the discovery of three more stars producing ECME. We find that the proposed scaling relation remains valid after the addition of the newly discovered stars. However, we discovered that the magnetic field and effective temperature correlate for Teff ≲ 16 kK (likely an artefact of the small sample size), rendering the proposed connection between ECME luminosity and Teff unreliable. By examining the empirical relation in light of the scaling law for incoherent radio emission, we arrive at the conclusion that both types of emission are powered by the same magnetospheric phenomenon. Like the incoherent emission, coherent radio emission is indifferent to Teff for late-B and A-type stars, but Teff appears to become important for early-B type stars, possibly due to higher absorption, or higher plasma density at the emission sites suppressing the production of the emission.

     
    more » « less
  5. Abstract SN 2018ivc is an unusual Type II supernova (SN II). It is a variant of SNe IIL, which might represent a transitional case between SNe IIP with a massive H-rich envelope and SNe IIb with only a small amount of the H-rich envelope. However, SN 2018ivc shows an optical light-curve evolution more complicated than that of canonical SNe IIL. In this paper, we present the results of prompt follow-up observations of SN 2018ivc with the Atacama Large Millimeter/submillimeter Array. Its synchrotron emission is similar to that of SN IIb 1993J, suggesting that it is intrinsically an SN IIb–like explosion of an He star with a modest (∼0.5–1 M ⊙ ) extended H-rich envelope. Its radio, optical, and X-ray light curves are explained primarily by the interaction between the SN ejecta and the circumstellar material (CSM); we thus suggest that it is a rare example (and the first involving the “canonical” SN IIb ejecta) for which the multiwavelength emission is powered mainly by the SN–CSM interaction. The inner CSM density, reflecting the progenitor activity in the final decade, is comparable to that of SN IIb 2013cu, which shows a flash spectral feature. The outer CSM density, and therefore the mass-loss rate in the final ∼200 yr, is higher than that of SN 1993J by a factor of ∼5. We suggest that SN 2018ivc represents a missing link between SNe IIP and SNe IIb/Ib/Ic in the binary evolution scenario. 
    more » « less
  6. null (Ed.)
  7. null (Ed.)
  8. Gamma-ray bursts (GRBs) are among the brightest and most energetic events in the universe. The duration and hardness distribution of GRBs has two clusters, now understood to reflect (at least) two different progenitors. Short-hard GRBs (SGRBs; T90 <2 s) arise from compact binary mergers, while long-soft GRBs (LGRBs; T90 >2 s) have been attributed to the collapse of peculiar massive stars (collapsars). The discovery of SN 1998bw/GRB 980425 marked the first association of a LGRB with a collapsar and AT 2017gfo/GRB 170817A/GW170817 marked the first association of a SGRB with a binary neutron star merger, producing also gravitational wave (GW). Here, we present the discovery of ZTF20abwysqy (AT2020scz), a fast-fading optical transient in the Fermi Satellite and the InterPlanetary Network (IPN) localization regions of GRB 200826A; X-ray and radio emission further confirm that this is the afterglow. Follow-up imaging (at rest-frame 16.5 days) reveals excess emission above the afterglow that cannot be explained as an underlying kilonova (KN), but is consistent with being the supernova (SN). Despite the GRB duration being short (rest-frame T90 of 0.65 s), our panchromatic follow-up data confirms a collapsar origin. GRB 200826A is the shortest LGRB found with an associated collapsar; it appears to sit on the brink between a successful and a failed collapsar. Our discovery is consistent with the hypothesis that most collapsars fail to produce ultra-relativistic jets. 
    more » « less