skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Chandra, Poonam"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We present the results from our extensive hard-to-soft X-ray (NuSTAR, Swift-XRT, XMM-Newton, Chandra) and meter-to-millimeter-wave radio (Giant Metrewave Radio Telescope, Very Large Array, NOEMA) monitoring campaign of the very nearby (d = 6.9 Mpc) Type II supernova (SN) 2023ixf spanning ≈4–165 days post-explosion. This unprecedented data set enables inferences on the explosion’s circumstellar medium (CSM) density and geometry. In particular, we find that the luminous X-ray emission is well modeled by thermal free–free radiation from the forward shock with rapidly decreasing photoelectric absorption with time. The radio spectrum is dominated by synchrotron radiation from the same shock. Similar to the X-rays, the level of free–free absorption affecting the radio spectrum rapidly decreases with time as a consequence of the shock propagation into the dense CSM. While the X-ray and the radio modeling independently support the presence of a dense medium corresponding to an effective mass-loss rate M ̇ 1 0 4 M yr 1 atR = (0.4–14) × 1015cm (forvw = 25 km s−1), our study points at a complex CSM density structure with asymmetries and clumps. The inferred densities are ≈10–100 times those of typical red supergiants, indicating an extreme mass-loss phase of the progenitor in the ≈200 yr preceding core collapse, which leads to the most X-ray luminous Type II SN and the one with the most delayed emergence of radio emission. These results add to the picture of the complex mass-loss history of massive stars on the verge of collapse and demonstrate the need for panchromatic campaigns to fully map their intricate environments. 
    more » « less
    Free, publicly-accessible full text available May 14, 2026
  2. Abstract While the subclass of interacting supernovae (SNe) with narrow hydrogen emission lines (Type IIn supernovae (SNe IIn)) consists of some of the longest-lasting and brightest supernovae (SNe) ever discovered, their progenitors are still not well understood. Investigating SNe IIn as they emit across the electromagnetic spectrum is the most robust way to understand the progenitor evolution before the explosion. This work presents X-ray, optical, infrared, and radio observations of the strongly interacting Type IIn supernova, SN 2020ywx, covering a period >1200 days after discovery. Through multiwavelength modeling, we find that the progenitor of 2020ywx was losing mass at ∼10−2–10−3Myr−1for at least 100 yr pre-explosion using the circumstellar medium (CSM) speed of 120 km s−1measured from optical and near-infrared (NIR) spectra. Despite the similar magnitude of mass loss measured in different wavelength ranges, we find discrepancies between the X-ray and optical/radio-derived mass-loss evolution, which suggest asymmetries in the CSM. Furthermore, we find evidence for dust formation due to the combination of a growing blueshift in optical emission lines and NIR continuum emission which we fit with blackbodies at ∼1000 K. Based on the observed elevated mass loss over more than 100 yr and the configuration of the CSM inferred from the multiwavelength observations, we invoke binary interaction as the most plausible mechanism to explain the overall mass-loss evolution. SN 2020ywx is thus a case that may support the growing observational consensus that SNe IIn mass loss is explained by binary interaction. 
    more » « less
    Free, publicly-accessible full text available April 11, 2026
  3. ABSTRACT We present the long-term photometric and spectroscopic analysis of a transitioning SN IIn/Ibn from –10.8 d to 150.7 d post V-band maximum. SN 2021foa shows prominent He i lines comparable in strength to the H $$\alpha$$ line around peak, placing SN 2021foa between the SN IIn and SN Ibn populations. The spectral comparison shows that it resembles the SN IIn population at pre-maximum, becomes intermediate between SNe IIn/Ibn, and at post-maximum matches with SN IIn 1996al. The photometric evolution shows a precursor at –50 d and a light curve shoulder around 17 d. The peak luminosity and colour evolution of SN 2021foa are consistent with most SNe IIn and Ibn in our comparison sample. SN 2021foa shows the unique case of an SN IIn where the narrow P-Cygni in H $$\alpha$$ becomes prominent at 7.2 d. The H $$\alpha$$ profile consists of a narrow (500–1200 km s$$^{-1}$$) component, intermediate width (3000–8000 km s$$^{-1}$$) and broad component in absorption. Temporal evolution of the H $$\alpha$$ profile favours a disc-like CSM geometry. Hydrodynamical modelling of the light curve well reproduces a two-component CSM structure with different densities ($$\rho \propto$$ r$$^{-2}$$–$$\rho \propto$$ r$$^{-5}$$), mass-loss rates (10$$^{-3}$$–10$$^{-1}$$ M$$_{\odot }$$ yr$$^{-1}$$) assuming a wind velocity of 1000 km s$$^{-1}$$ and having a CSM mass of 0.18 M$$_{\odot }$$. The overall evolution indicates that SN 2021foa most likely originated from an LBV star transitioning to a WR star with the mass-loss rate increasing in the period from 5 to 0.5 yr before the explosion or it could be due to a binary interaction. 
    more » « less
  4. ABSTRACT We present multiwavelength observations of supernova (SN) 2017hcc with the Chandra X-ray telescope and the X-ray telescope onboard Swift (Swift-XRT) in X-ray bands, with the Spitzer and the TripleSpec spectrometer in near-infrared (IR) and mid-IR bands and with the Karl G. Jansky Very Large Array (VLA) for radio bands. The X-ray observations cover a period of 29 to 1310 d, with the first X-ray detection on day 727 with the Chandra. The SN was subsequently detected in the VLA radio bands from day 1000 onwards. While the radio data are sparse, synchrotron-self absorption is clearly ruled out as the radio absorption mechanism. The near- and the mid-IR observations showed that late time IR emission dominates the spectral energy distribution. The early properties of SN 2017hcc are consistent with shock breakout into a dense mass-loss region, with $$\dot{M} \sim 0.1$$ M⊙ yr−1 for a decade. At few 100 d, the mass-loss rate declined to ∼0.02 M⊙ yr−1, as determined from the dominant IR luminosity. In addition, radio data also allowed us to calculate a mass-loss rate at around day 1000, which is two orders of magnitude smaller than the mass-loss rate estimates around the bolometric peak. These values indicate that the SN progenitor underwent an enhanced mass-loss event a decade before the explosion. The high ratio of IR to X-ray luminosity is not expected in simple models and is possible evidence for an asymmetric circumstellar region. 
    more » « less
  5. Abstract SN 2018ivc is an unusual Type II supernova (SN II). It is a variant of SNe IIL, which might represent a transitional case between SNe IIP with a massive H-rich envelope and SNe IIb with only a small amount of the H-rich envelope. However, SN 2018ivc shows an optical light-curve evolution more complicated than that of canonical SNe IIL. In this paper, we present the results of prompt follow-up observations of SN 2018ivc with the Atacama Large Millimeter/submillimeter Array. Its synchrotron emission is similar to that of SN IIb 1993J, suggesting that it is intrinsically an SN IIb–like explosion of an He star with a modest (∼0.5–1 M ⊙ ) extended H-rich envelope. Its radio, optical, and X-ray light curves are explained primarily by the interaction between the SN ejecta and the circumstellar material (CSM); we thus suggest that it is a rare example (and the first involving the “canonical” SN IIb ejecta) for which the multiwavelength emission is powered mainly by the SN–CSM interaction. The inner CSM density, reflecting the progenitor activity in the final decade, is comparable to that of SN IIb 2013cu, which shows a flash spectral feature. The outer CSM density, and therefore the mass-loss rate in the final ∼200 yr, is higher than that of SN 1993J by a factor of ∼5. We suggest that SN 2018ivc represents a missing link between SNe IIP and SNe IIb/Ib/Ic in the binary evolution scenario. 
    more » « less
  6. null (Ed.)
  7. null (Ed.)
  8. Gamma-ray bursts (GRBs) are among the brightest and most energetic events in the universe. The duration and hardness distribution of GRBs has two clusters, now understood to reflect (at least) two different progenitors. Short-hard GRBs (SGRBs; T90 <2 s) arise from compact binary mergers, while long-soft GRBs (LGRBs; T90 >2 s) have been attributed to the collapse of peculiar massive stars (collapsars). The discovery of SN 1998bw/GRB 980425 marked the first association of a LGRB with a collapsar and AT 2017gfo/GRB 170817A/GW170817 marked the first association of a SGRB with a binary neutron star merger, producing also gravitational wave (GW). Here, we present the discovery of ZTF20abwysqy (AT2020scz), a fast-fading optical transient in the Fermi Satellite and the InterPlanetary Network (IPN) localization regions of GRB 200826A; X-ray and radio emission further confirm that this is the afterglow. Follow-up imaging (at rest-frame 16.5 days) reveals excess emission above the afterglow that cannot be explained as an underlying kilonova (KN), but is consistent with being the supernova (SN). Despite the GRB duration being short (rest-frame T90 of 0.65 s), our panchromatic follow-up data confirms a collapsar origin. GRB 200826A is the shortest LGRB found with an associated collapsar; it appears to sit on the brink between a successful and a failed collapsar. Our discovery is consistent with the hypothesis that most collapsars fail to produce ultra-relativistic jets. 
    more » « less